Black out (Fusione Fredda, Andrea Rossi....)

 

  By: GZ on Lunedì 14 Marzo 2011 03:25

^questa è la TV giapponese in diretta versione inglese#http://www.livestation.com/channels/123-nhk-world-english^ come contrappunto alle immagini terrificanti di cittadine distrutte della TV giapponese su Bloomberg e Cnbc sento gli esperti di borsa che dichiarano che stimolerà l'economia ed è positivo per i mercati (l'unico ragionamento che sono capaci di fare è "...c'è un pretesto o motivo per spendere ed indebitarsi ?..." Quello che è vero è che Taiwan e Corea che producono le stesse cose dei giapponesi ora che questi hanno le fabbriche e porti chiusi ne approfittano... Buy ^Samsung#^ e ^Hyundai#^ ... Sell ^Honda#^ e ^Sony#^...

 

  By: Andrea on Lunedì 14 Marzo 2011 03:06

Qualche minuto fa sono finalmente riuscito a mettermi in contatto con un amico che vive, con la famiglia, in Giappone dove lui insegna all'università di Aizu. Mi diceva che con circa 5 secondi di anticipo sui "tremori" i sistemi di allarme dell'università hanno iniziato a suonare e avverto di "prepararsi". Lui stesso commento ironicamente che è un preavviso così breve che non ti permette di fuggire all'aperto, metterti al riparo, ecc. A ogni modo è incredibile come siano organizzati. Appena la stazione più vicina all'epicentro di un terremoto ne rileva uno "importante" diffonde questo segnale. Mi diceva anche che da loro la scossa è durata circa 2 minuti ma che, seppure assai meno violente, è da venerdì che ballano quasi di continuo tra scosse più o meno forti. Mi ha pure inviato una foto del suo laboratorio che lascia poco spazio all'immaginazione. Tutto ciò che poteva cadere e rompersi lo ha fatto. Ma i muri sono in piedi.

 

  By: Andrea on Lunedì 14 Marzo 2011 01:14

GZ > Evviva la Siemens....magari avessimo noi la Siemens ... Sottoscrivo.

 

  By: Cures on Lunedì 14 Marzo 2011 00:43

Aggiungo una cosa, tanto per scrostare un poco lo stereotipo del tedesco tutto d’un pezzo Anni fa andavo ogni tanto a certe riunioni che si tenevano a Colonia e a Monaco di Baviera Un inverno molto freddo dovetti partecipare ad una riunione che si teneva proprio nella sede della Siemens di Monaco di Baviera. Sta nella estrema periferia della città e per arrivarci il mezzo più comodo è la metropolitana Non era la prima riunione ed in quelle precedenti aveva sempre partecipato, trattandosi di una fornitura molto particolare, un certo colonnello della Bundeswehr Inizia la riunione e, sorpresa sorpresa, il colonnello da acquirente si era trasformato in venditore. Si era licenziato ed era passato armi e bagagli al “nemico” passando da un lato del tavolo a quello opposto Cosi va il mondo in quel di Germania

 

  By: GZ on Lunedì 14 Marzo 2011 00:28

e perchè mai dovrebbero mettersi contro la Siemens che produce tecnologia, posti di lavoro pagati bene e ricchezza per la Germania ? Mica è la Goldman Sachs o Citigroup o Wal Mart o McDonald... Evviva la Siemens....magari avessimo noi la Siemens, la Bayer, la Volkswagen, la Thyssen, la BASF....

 

  By: Cures on Lunedì 14 Marzo 2011 00:22

Vale anche per la Germania. Non è che in Germania le cose, in certi settori, funzionino tanto meglio che in Italia. Anche li esistono i gruppi di pressione che spingono i politici a scelte convenienti solo per loro. Devo ancora leggere di un politico tedesco che osi mettersi contro la Siemens o che si permetta di non avallare le scelte del consorzio EADS

 

  By: SpiderMars on Lunedì 14 Marzo 2011 00:10

Non si tratta di destra o di sinistra, ma di giudicare se certe scelte siano strategicamente, economicamente e tecnicamente corrette ________________________________________________________ Allora mi chiedo in tutto il Mondo e ripeto in Germania dove reputo vi siano politici meno politicanti che negli altri paesi hanno deliberato la costruzione di 50 nuove Centrali nucleari ritenute ultrasicure da qui al 2050 per loro non sono strategicamente, economicamente e tecnicamente corrette ??? se fosse possibile un' alternativa pensate che ne costruirebbero 50 nuove..! evidentemente non vi è alternativa credibile al Nucleare di ultima generazione.

 

  By: furibes on Domenica 13 Marzo 2011 23:56

Ma pensa che s *** ti i nostri "politicanti e imprenditori del nuclare"! questa catastrofe capita, purtroppo per la sfortunata popolazione giapponese, proprio nel momento in cui stanno cercando di farci credere che non possiamo fare a meno delle "sicure" centrali nucleari. Io penso proprio che una volta per tutte dovremo pensare ad altre fonti di energia.....se non addirittura a rimodulare e rivedere la visione del futuro (ma questo varrà per tutte le nazioni). Mah! almeno, forse, riusciremo a risparmiare un pò di miliardi di euro.

 

  By: Cures on Domenica 13 Marzo 2011 23:53

Non si tratta di destra o di sinistra, ma di giudicare se certe scelte siano strategicamente, economicamente e tecnicamente corrette o se invece sia l’ennesimo assalto ai soldi pubblici da parte di predatori del tutto indifferenti alle conseguenze di quello che fanno. I carburanti fossili, gas, petrolio, carbone e nucleare sono perdenti sia perché si tratta di risorse in via di esaurimento sul breve termine, e quindi dai costi destinati inevitabilmente a crescere esponenzialmente, sia per i costi associati alle conseguenze del loro utilizzo Non c’è un tecnico che non lo sappia. Poi possiamo disquisire fino alla nausea se abbiamo o no raggiunto il peak oil o altre discussioni del genere. Ma quando si aprono certe discussioni allora è certo che siamo già a contatto con la scarsità di risorse La pianura padana è una delle aree d’Europa più inquinate dai residui della combustione e chi vi abita dovrebbe strillare come un’aquila per imporre ai politici le strategie di riconversione delle fonti energetiche invece di sostenere entusiasticamente il ricorso al nucleare di terza generazione che serve solo ad aspirare i nostri soldi per pomparli nelle tasche dei francesi e dei loro complici italiani. Effettuare massicci investimenti nello sfruttamento di risorse in via di esaurimento è, prima di tutto, sommamente idiota e l’idiota non ha colore politico Le soluzioni tecniche ci sono ed altre stanno arrivando. I costi sono in rapida discesa ma tocca prima levarsi dalle palle una classe politica avida, ignorante e pericolosa. Di qualunque colore politico

 

  By: Moderatore on Domenica 13 Marzo 2011 23:52

Finora nel mondo ci sono stati morti a causa di reattori nucleari solo in un caso, che non fa testo perchè era in URSS dove avevano violato le norme minime di sicurezza allo stesso modo in cui le violavano negli impianti chimici, nelle centrali a carbone e in dozzine di impianti industriali di altro genere per cui hanno avvelenevano centinaia di migliaia di persone (oltre al caso di Chernobyl) Al di fuori dei paesi comunisti finora NON E' ANCORA MORTO NESSUNO, a causa del nucleare mentre per eccesso di pesticidi nei pomodori in Spagna morirono negli anni '80 centinaia di persone in un mese Comunque qui sotto una spiegazione di come funziona un reattore come quello di Fukushima e del perchè è improbabile che ci siano dei morti da radiazioni. Io ne capisco la metà ma è impressionante vedere come tutto sia protetto in una centrale nucleare ----- .... at Fukushima are so called Boiling Water Reactors, or BWR for short. Boiling Water Reactors are similar to a pressure cooker. The nuclear fuel heats water, the water boils and creates steam, the steam then drives turbines that create the electricity, and the steam is then cooled and condensed back to water, and the water send back to be heated by the nuclear fuel. The pressure cooker operates at about 250 °C. The nuclear fuel is uranium oxide. Uranium oxide is a ceramic with a very high melting point of about 3000 °C. The fuel is manufactured in pellets (think little cylinders the size of Lego bricks). Those pieces are then put into a long tube made of Zircaloy with a melting point of 2200 °C, and sealed tight. The assembly is called a fuel rod. These fuel rods are then put together to form larger packages, and a number of these packages are then put into the reactor. All these packages together are referred to as “the core”. The Zircaloy casing is the first containment. It separates the radioactive fuel from the rest of the world. The core is then placed in the “pressure vessels”. That is the pressure cooker we talked about before. The pressure vessels is the second containment. This is one sturdy piece of a pot, designed to safely contain the core for temperatures several hundred °C. That covers the scenarios where cooling can be restored at some point. The entire “hardware” of the nuclear reactor – the pressure vessel and all pipes, pumps, coolant (water) reserves, are then encased in the third containment. The third containment is a hermetically (air tight) sealed, very thick bubble of the strongest steel. The third containment is designed, built and tested for one single purpose: To contain, indefinitely, a complete core meltdown. For that purpose, a large and thick concrete basin is cast under the pressure vessel (the second containment), which is filled with graphite, all inside the third containment. This is the so-called "core catcher". If the core melts and the pressure vessel bursts (and eventually melts), it will catch the molten fuel and everything else. It is built in such a way that the nuclear fuel will be spread out, so it can cool down. This third containment is then surrounded by the reactor building. The reactor building is an outer shell that is supposed to keep the weather out, but nothing in. (this is the part that was damaged in the explosion, but more to that later). Fundamentals of nuclear reactions: The uranium fuel generates heat by nuclear fission. Big uranium atoms are split into smaller atoms. That generates heat plus neutrons (one of the particles that forms an atom). When the neutron hits another uranium atom, that splits, generating more neutrons and so on. That is called the nuclear chain reaction. Now, just packing a lot of fuel rods next to each other would quickly lead to overheating and after about 45 minutes to a melting of the fuel rods. It is worth mentioning at this point that the nuclear fuel in a reactor can *never* cause a nuclear explosion the type of a nuclear bomb. Building a nuclear bomb is actually quite difficult (ask Iran). In Chernobyl, the explosion was caused by excessive pressure buildup, hydrogen explosion and rupture of all containments, propelling molten core material into the environment (a “dirty bomb”). Why that did not and will not happen in Japan, further below. In order to control the nuclear chain reaction, the reactor operators use so-called “moderator rods”. The moderator rods absorb the neutrons and kill the chain reaction instantaneously. A nuclear reactor is built in such a way, that when operating normally, you take out all the moderator rods. The coolant water then takes away the heat (and converts it into steam and electricity) at the same rate as the core produces it. And you have a lot of leeway around the standard operating point of 250°C. The challenge is that after inserting the rods and stopping the chain reaction, the core still keeps producing heat. The uranium “stopped” the chain reaction. But a number of intermediate radioactive elements are created by the uranium during its fission process, most notably Cesium and Iodine isotopes, i.e. radioactive versions of these elements that will eventually split up into smaller atoms and not be radioactive anymore. Those elements keep decaying and producing heat. Because they are not regenerated any longer from the uranium (the uranium stopped decaying after the moderator rods were put in), they get less and less, and so the core cools down over a matter of days, until those intermediate radioactive elements are used up. This residual heat is causing the headaches right now. So the first “type” of radioactive material is the uranium in the fuel rods, plus the intermediate radioactive elements that the uranium splits into, also inside the fuel rod (Cesium and Iodine). There is a second type of radioactive material created, outside the fuel rods. The big main difference up front: Those radioactive materials have a very short half-life, that means that they decay very fast and split into non-radioactive materials. By fast I mean seconds. So if these radioactive materials are released into the environment, yes, radioactivity was released, but no, it is not dangerous, at all. Why? By the time you spelled “R-A-D-I-O-N-U-C-L-I-D-E”, they will be harmless, because they will have split up into non radioactive elements. Those radioactive elements are N-16, the radioactive isotope (or version) of nitrogen (air). The others are noble gases such as Xenon. But where do they come from? When the uranium splits, it generates a neutron (see above). Most of these neutrons will hit other uranium atoms and keep the nuclear chain reaction going. But some will leave the fuel rod and hit the water molecules, or the air that is in the water. Then, a non-radioactive element can “capture” the neutron. It becomes radioactive. As described above, it will quickly (seconds) get rid again of the neutron to return to its former beautiful self. This second “type” of radiation is very important when we talk about the radioactivity being released into the environment later on. What happened at Fukushima I will try to summarize the main facts. The earthquake that hit Japan was 7 times more powerful than the worst earthquake the nuclear power plant was built for (the Richter scale works logarithmically; the difference between the 8.2 that the plants were built for and the 8.9 that happened is 7 times, not 0.7). So the first hooray for Japanese engineering, everything held up. When the earthquake hit with 8.9, the nuclear reactors all went into automatic shutdown. Within seconds after the earthquake started, the moderator rods had been inserted into the core and nuclear chain reaction of the uranium stopped. Now, the cooling system has to carry away the residual heat. The residual heat load is about 3% of the heat load under normal operating conditions. The earthquake destroyed the external power supply of the nuclear reactor. That is one of the most serious accidents for a nuclear power plant, and accordingly, a “plant black out” receives a lot of attention when designing backup systems. The power is needed to keep the coolant pumps working. Since the power plant had been shut down, it cannot produce any electricity by itself any more. Things were going well for an hour. One set of multiple sets of emergency Diesel power generators kicked in and provided the electricity that was needed. Then the Tsunami came, much bigger than people had expected when building the power plant (see above, factor 7). The tsunami took out all multiple sets of backup Diesel generators. When designing a nuclear power plant, engineers follow a philosophy called “Defense of Depth”. That means that you first build everything to withstand the worst catastrophe you can imagine, and then design the plant in such a way that it can still handle one system failure (that you thought could never happen) after the other. A tsunami taking out all backup power in one swift strike is such a scenario. The last line of defense is putting everything into the third containment (see above), that will keep everything, whatever the mess, moderator rods in our out, core molten or not, inside the reactor. When the diesel generators were gone, the reactor operators switched to emergency battery power. The batteries were designed as one of the backups to the backups, to provide power for cooling the core for 8 hours. And they did. Within the 8 hours, another power source had to be found and connected to the power plant. The power grid was down due to the earthquake. The diesel generators were destroyed by the tsunami. So mobile diesel generators were trucked in. This is where things started to go seriously wrong. The external power generators could not be connected to the power plant (the plugs did not fit). So after the batteries ran out, the residual heat could not be carried away any more. At this point the plant operators begin to follow emergency procedures that are in place for a “loss of cooling event”. It is again a step along the “Depth of Defense” lines. The power to the cooling systems should never have failed completely, but it did, so they “retreat” to the next line of defense. All of this, however shocking it seems to us, is part of the day-to-day training you go through as an operator, right through to managing a core meltdown. It was at this stage that people started to talk about core meltdown. Because at the end of the day, if cooling cannot be restored, the core will eventually melt (after hours or days), and the last line of defense, the core catcher and third containment, would come into play. But the goal at this stage was to manage the core while it was heating up, and ensure that the first containment (the Zircaloy tubes that contains the nuclear fuel), as well as the second containment (our pressure cooker) remain intact and operational for as long as possible, to give the engineers time to fix the cooling systems. Because cooling the core is such a big deal, the reactor has a number of cooling systems, each in multiple versions (the reactor water cleanup system, the decay heat removal, the reactor core isolating cooling, the standby liquid cooling system, and the emergency core cooling system). Which one failed when or did not fail is not clear at this point in time. So imagine our pressure cooker on the stove, heat on low, but on. The operators use whatever cooling system capacity they have to get rid of as much heat as possible, but the pressure starts building up. The priority now is to maintain integrity of the first containment (keep temperature of the fuel rods below 2200°C), as well as the second containment, the pressure cooker. In order to maintain integrity of the pressure cooker (the second containment), the pressure has to be released from time to time. Because the ability to do that in an emergency is so important, the reactor has 11 pressure release valves. The operators now started venting steam from time to time to control the pressure. The temperature at this stage was about 550°C. This is when the reports about “radiation leakage” starting coming in. I believe I explained above why venting the steam is theoretically the same as releasing radiation into the environment, but why it was and is not dangerous. The radioactive nitrogen as well as the noble gases do not pose a threat to human health. At some stage during this venting, the explosion occurred. The explosion took place outside of the third containment (our “last line of defense”), and the reactor building. Remember that the reactor building has no function in keeping the radioactivity contained. It is not entirely clear yet what has happened, but this is the likely scenario: The operators decided to vent the steam from the pressure vessel not directly into the environment, but into the space between the third containment and the reactor building (to give the radioactivity in the steam more time to subside). The problem is that at the high temperatures that the core had reached at this stage, water molecules can “disassociate” into oxygen and hydrogen – an explosive mixture. And it did explode, outside the third containment, damaging the reactor building around. It was that sort of explosion, but inside the pressure vessel (because it was badly designed and not managed properly by the operators) that lead to the explosion of Chernobyl. This was never a risk at Fukushima. The problem of hydrogen-oxygen formation is one of the biggies when you design a power plant (if you are not Soviet, that is), so the reactor is build and operated in a way it cannot happen inside the containment. It happened outside, which was not intended but a possible scenario and OK, because it did not pose a risk for the containment. So the pressure was under control, as steam was vented. Now, if you keep boiling your pot, the problem is that the water level will keep falling and falling. The core is covered by several meters of water in order to allow for some time to pass (hours, days) before it gets exposed. Once the rods start to be exposed at the top, the exposed parts will reach the critical temperature of 2200 °C after about 45 minutes. This is when the first containment, the Zircaloy tube, would fail. And this started to happen. The cooling could not be restored before there was some (very limited, but still) damage to the casing of some of the fuel. The nuclear material itself was still intact, but the surrounding Zircaloy shell had started melting. What happened now is that some of the byproducts of the uranium decay - radioactive Cesium and Iodine - started to mix with the steam. The big problem, uranium, was still under control, because the uranium oxide rods were good until 3000 °C. It is confirmed that a very small amount of Cesium and Iodine was measured in the steam that was released into the atmosphere. It seems this was the “go signal” for a major plan B. The small amounts of Cesium that were measured told the operators that the first containment on one of the rods somewhere was about to give. The Plan A had been to restore one of the regular cooling systems to the core. Why that failed is unclear. One plausible explanation is that the tsunami also took away / polluted all the clean water needed for the regular cooling systems. The water used in the cooling system is very clean, demineralized (like distilled) water. The reason to use pure water is the above mentioned activation by the neutrons from the Uranium: Pure water does not get activated much, so stays practically radioactive-free. Dirt or salt in the water will absorb the neutrons quicker, becoming more radioactive. This has no effect whatsoever on the core - it does not care what it is cooled by. But it makes life more difficult for the operators and mechanics when they have to deal with activated (i.e. slightly radioactive) water. But Plan A had failed - cooling systems down or additional clean water unavailable - so Plan B came into effect. This is what it looks like happened: In order to prevent a core meltdown, the operators started to use sea water to cool the core. I am not quite sure if they flooded our pressure cooker with it (the second containment), or if they flooded the third containment, immersing the pressure cooker. But that is not relevant for us. The point is that the nuclear fuel has now been cooled down. Because the chain reaction has been stopped a long time ago, there is only very little residual heat being produced now. The large amount of cooling water that has been used is sufficient to take up that heat. Because it is a lot of water, the core does not produce sufficient heat any more to produce any significant pressure. Also, boric acid has been added to the seawater. Boric acid is "liquid control rod". Whatever decay is still going on, the Boron will capture the neutrons and further speed up the cooling down of the core. The plant came close to a core meltdown. Here is the worst-case scenario that was avoided: If the seawater could not have been used for treatment, the operators would have continued to vent the water steam to avoid pressure buildup. The third containment would then have been completely sealed to allow the core meltdown to happen without releasing radioactive material. After the meltdown, there would have been a waiting period for the intermediate radioactive materials to decay inside the reactor, and all radioactive particles to settle on a surface inside the containment. The cooling system would have been restored eventually, and the molten core cooled to a manageable temperature. The containment would have been cleaned up on the inside. Then a messy job of removing the molten core from the containment would have begun, packing the (now solid again) fuel bit by bit into transportation containers to be shipped to processing plants. Depending on the damage, the block of the plant would then either be repaired or dismantle

 

  By: Esteban. on Domenica 13 Marzo 2011 23:25

Gianlini, Se stesse capitando a Te, magari un po ti preoccuperebbe ... Perchè fare gli Sborroni ? ora pare siano 4 gli impianti nucleari con problemi ... Tutto normale ? Se ti fai male ad un incrocio riguarda Te ... Se ti scoppia un reattore euna nuvola radioattiva Ti becca Sei Fottuto ... Se poi accade tipo chernobyl è fottuta pure l'europa ... Non so quali metodi di paragone Utilizzi ma , non mi pare la stessa cosa ... ^Rischio nucleare in Giappone, Goto accusa: “Tokio ha mentito”#http://www.vogliosapere.org/2011/03/13/rischio-nucleare-in-giappone-goto-accusa-tokio-ha-mentito/^ ^Giappone: paura per quattro impianti nucleari#http://sostenibile.blogosfere.it/2011/03/giappone-paura-per-quattro-impianti-nucleari.html^

 

  By: gianlini on Domenica 13 Marzo 2011 23:06

di fronte a qualche decina o centinaia o migliaia di morti al giorno per le più disparate ragioni, è irrazionale chiedere sicurezza assoluta per una importante fonte di energia, energia che è poi motrice di mille emozioni positive; conosco persone che attraversano tutti i giorni la strada ad incroci per i quali è nota la pericolosità, eppure lo fanno; cosa è che turba tanto alla parola nucleare?

 

  By: bearthatad on Domenica 13 Marzo 2011 22:30

Comunque ampliando il "parco batterie" potresti stivare l'energia prodotta in eccesso per lunghi periodi" ... per capirsi , se ho solo 3 batterie è chiaro che a carica massima non accumulo più nulla... Mentre se ne ho il doppio o il triplo (a secomda della situazione), magari riesco ad avere energia pure se qualche giorno è pessimo(a livello solare). ------------------------------ Chemm.....a è il parco batterie???

 

  By: SpiderMars on Domenica 13 Marzo 2011 22:28

Credi forse che quella nuvola di cesio radioattivo uscita dopo l'esplosione della centrale nucleare in giappone sia irrilevante ? spera solo che quella nuvoletta non decida di investire qualche città altrimenti lo vedi a distanza di anni che accadrà ... ---------------------------------------------------- Ma quale nuvoletta di cesio ....ma voi dovete strumentalizzare sempre tutto..! è uscito del vapore acqueo misto con percentuali di particelle radioattive appena sopra la norma ma perchè non parlate della diga che è scoppiata ed a causato migliaia di morti dispersi e danni immensi ma lì si parla di idroelettrico ed allora non conviene, non c'è il vostro referendum in ballo, siete i soliti campioni della DISINFORMAZIONE capziosa. gli impianti di varie centrali termoelettriche a olio combustibile e a gas so­no stati travolti, sono esplosi uccidendo molte persone, hanno diffuso nell’aria e nel­l’acqua tonnellate di agenti inquinanti (vogliamo per questo contestare l’uso del petrolio e del gas per produr­re energia?). No, niente da fare, qui si parla d’altro. C’è un referen­dum sul nucleare in vista e bi­sogna correre a dichiarare, prima che lo faccia qualche altro pezzo di sinistra. Nichi Vendola se la prende con la «narrazione della leggenda della sicurezza» (appunto, la narrazione). E subito si fa cu­pamente veggente: «Quel fu­mo radioattivo è un’ipoteca drammatica non solo su quei territori del Giappone ma sulla vita della specie umana sul pianeta, io chiedo con forza che il Governo e il Parlamento blocchino l’op­zione nuclearista nel nostro Paese». E vabbé, parla di fu­mo e si fa fumoso. e tutti i sinistri rispondono all' appello scatenadosi sui Blog.

 

  By: Cures on Domenica 13 Marzo 2011 22:04

I moduli fotovoltaici odierni hanno una vita stimata di 80 anni circa, anche se è plausibile ipotizzare che vengano dismessi dopo un ciclo di vita di 35-40 anni, a causa della perdita di potenza dei moduli e del miglioramento tecnologico dei nuovi prodotti